Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Anal Chem ; 96(13): 5178-5187, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38500378

RESUMO

Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/µL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.


Assuntos
Vírus da Febre Suína Africana , Nanopartículas Metálicas , Animais , Suínos , Vírus da Febre Suína Africana/genética , Sistemas CRISPR-Cas/genética , Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Hidrolases , Recombinases , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico
2.
Exp Parasitol ; 260: 108723, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432406

RESUMO

Cystic echinococcosis (CE) is a zoonotic disease, caused by Echinococcus granulosus sensu lato (E. granulosus s. l.), which posed significant public health concern globally. E. granulosus s. l. annexin B18 (EgANXB18) acts as a secretory protein, exerting a crucial influence in mediating host-parasite interactions. Recombinant annexin B18 (rEgANXB18) was expressed by Escherichia coli and the immunoreactivity was assessed by western blotting. The binding affinity between rEgANXB18 and total protein of RAW264.7 cells was assessed by ELISA. The impact of rEgANXB18 on the metabolic activity of RAW264.7 cells was assayed by Cell Counting Kit-8 assay. The mRNA levels of polarization markers (inducible nitrous oxide synthase (iNOS) and arginase 1 (Arg1)) and key cellular factors (IL-1ß,IL-6,IL-10 and TNFα) were evaluated by qRT-PCR. rEgANXB18 was successfully expressed and recognized by E. granulosus s.l. infected canine sera, as well as could bind to the total protein of RAW264.7 cells. Additionally, rEgANXB18 could promote metabolic activity at 5, 10, 20, and 40 µg/mL while no significant impact on metabolic activity was observed at 80 µg/mL. Co-culture RAW264.7 cells with rEgANXB18 resulted in significantly upregulation of the transcript levels of polarization markers iNOS and Arg1. Moreover, rEgANXB18 significantly upregulated the transcript levels of IL-1ß, IL-6, TNFα, and IL-10, while dose-effect relationship was observed in IL-1ß, IL-6, and IL-10. Our results indicated that EgANXB18 showed the potential to regulate immune response of macrophages by shifting the cell polarization and cytokine profile, thereby promoting the parasitism of CE.

3.
Microb Pathog ; 187: 106513, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147968

RESUMO

Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.


Assuntos
Begoniaceae , Herpesvirus Suídeo 1 , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas contra Pseudorraiva , Anticorpos Antivirais , Vacinação/veterinária , Vacinas Virais/genética
4.
PLoS Negl Trop Dis ; 17(10): e0011709, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871121

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is caused by the infection of Echinococcus granulosus sensu lato (E. granulosus s.l.), one of the most harmful zoonotic helminths worldwide. Infected dogs are the major source of CE transmission. While praziquantel-based deworming is a main measure employed to control dog infections, its efficacy is at times compromised by the persistent high rate of dog re-infection and the copious discharge of E. granulosus eggs into the environment. Therefore, the dog vaccine is a welcome development, as it offers a substantial reduction in the biomass of E. granulosus. This study aimed to use previous insights into E. granulosus functional genes to further assess the protective efficacy of six recombinant proteins in dogs using a two-time injection vaccination strategy. METHODS: We expressed and combined recombinant E. granulosus triosephosphate isomerase (rEgTIM) with annexin B3 (rEgANXB3), adenylate kinase 1 (rEgADK1) with Echinococcus protoscolex calcium binding protein 1 (rEgEPC1), and fatty acid-binding protein (rEgFABP) with paramyosin (rEgA31). Beagle dogs received two subcutaneous vaccinations mixed with Quil-A adjuvant, and subsequently orally challenged with protoscoleces two weeks after booster vaccination. All dogs were sacrificed for counting and measuring E. granulosus tapeworms at 28 days post-infection, and the level of serum IgG was detected by ELISA. RESULTS: Dogs vaccinated with rEgTIM&rEgANXB3, rEgADK1&rEgEPC1, and rEgFABP-EgA31 protein groups exhibited significant protectiveness, with a worm reduction rate of 71%, 57%, and 67%, respectively, compared to the control group (P < 0.05). Additionally, the vaccinated groups exhibited an inhibition of worm growth, as evidenced by a reduction in body length and width (P < 0.05). Furthermore, the level of IgG in the vaccinated dogs was significantly higher than that of the control dogs (P < 0.05). CONCLUSION: These verified candidates may be promising vaccines for the prevention of E. granulosus infection in dogs following two injections. The rEgTIM&rEgANXB3 co-administrated vaccine underscored the potential for the highest protective efficacy and superior protection stability for controlling E. granulosus infections in dogs.


Assuntos
Doenças do Cão , Equinococose , Echinococcus granulosus , Cães , Animais , Echinococcus granulosus/genética , Equinococose/prevenção & controle , Equinococose/veterinária , Vacinas Sintéticas/genética , Proteínas Recombinantes/genética , Doenças do Cão/prevenção & controle , Doenças do Cão/parasitologia , Imunoglobulina G
5.
Front Physiol ; 14: 1201275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791346

RESUMO

Objective: To propose a nerve stereoscopic reconstruction technique based on ultrasound imaging for site diagnosis, intuitive reflection of disease severity, and classification of neuralgic amyotrophy (NA). Methods: We enrolled 44 patients with NA who underwent high-frequency ultrasonography examination. Multiple sites on the normal side and the affected side were scanned to calculate the ratio of the cross-section area (CSA) of the affected side to the normal side at each location measured, i.e., the cross-section area swelling ratio (CSASR). The CSASR of 44 patients and 30 normal controls was analyzed to determine their threshold value for the diagnosis of NA. Then, ultrasound images of the cross-section were used to reconstruct the stereoscopic model of the nerve on the affected side and the normal side. Using the CSASR values in each measurement location, a CSASR stereoscopic model was developed. Results: The threshold value of CSASR for ultrasound diagnosis of NA was 1.55. The average diseased segments per patient was 2.49 ± 1.97, with an average overall length of 10.03 ± 7.95 cm. Nerve stereoscopic reconstruction could be conducted for swelling, torsion, incomplete constriction, and complete constriction. Conclusion: The ultrasound image reconstruction method proposed in this study can accurately determine the site, range, and type of neuropathies in patients with NA, and simultaneously provide complete and accurate data information and intuitive morphological information.

6.
Parasit Vectors ; 16(1): 350, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803469

RESUMO

BACKGROUND: Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS: Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS: In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS: Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.


Assuntos
Equinococose , Echinococcus granulosus , Doenças dos Ovinos , Animais , Camundongos , Ovinos , Anexinas/genética , Leucócitos Mononucleares/metabolismo , Equinococose/parasitologia , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo
7.
Vet Sci ; 10(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37756079

RESUMO

Mycoplasma hyorhinis (M. hyorhinis) is responsible for infections in the swine population. Such infections are usually cured by using antimicrobials and lead to develop resistance. Until now, there has been no effective vaccine to eradicate the disease. This study used conserved domains found in seven members of the variable lipoprotein (VlpA-G) family in order to design a multi-epitope candidate vaccine (MEV) against M. hyorhinis. The immunoinformatics approach was followed to predict epitopes, and a vaccine construct consisting of an adjuvant, two B cell epitopes, two HTL epitopes, and one CTL epitope was designed. The suitability of the vaccine construct was identified by its non-allergen, non-toxic, and antigenic nature. A molecular dynamic simulation was executed to assess the stability of the TLR2 docked structure. An immune simulation showed a high immune response toward the antigen. The protein sequence was reverse-translated, and codons were optimized to gain a high expression level in E. coli. The proposed vaccine construct may be a candidate for a multi-epitope vaccine. Experimental validation is required in future to test the safety and efficacy of the hypothetical candidate vaccine.

8.
Front Immunol ; 14: 1200297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720232

RESUMO

African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Suínos , Vacinação , Imunização , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos , Antígenos de Histocompatibilidade Classe II , Imunidade Celular
9.
Viruses ; 15(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515141

RESUMO

The novel variant IBDV (nVarIBDV, especially genotype A2dB1) mainly affects broilers in China. It causes an infection characterized by the atrophy of the bursa, a decrease in the level of lymphocytes, proliferation of fibrous tissue around the follicle, and severe atrophy of the follicle in the bursa. Poultry vaccinated with live IBDV vaccines do not have the challenge present with bursa atrophy, which is misdiagnosed for nVarIBDV because of the lack of other gross clinical symptoms. The present study sought to explore the potential and reliability of the real-time TaqMan analysis method for the detection and discrimination of the nVarIBDV genotype from that of the non-nVarIBDV, especially in live vaccine strains. This method will help monitor vaccinated poultry to control and manage infection with the nVarIBDV IBDVs. The nucleotide polymorphism in the 5'-UTR region and the vp5/vp2 overlapping region of the segment A sequences of IBDV were used to establish a one-step real-time TaqMan reverse transcription polymerase chain reaction (RT-PCR) method in this study. The results showed that the method accurately distinguished the nVarIBDV and non-nVarIBDV strains (especially live vaccine strains), and there were no cross-reactions with the infectious bronchitis virus (IBV), Newcastle disease virus (NDV), avian influenza virus (AIV), infectious laryngotracheitis virus (ILTV), fowlpox virus (FPV), Mycoplasma gallisepticum (M. gallisepticum), Mycoplasma synoviae (M. synoviae), and IBDV-negative field samples. The method showed a linear dynamic range between 102 and 107 DNA copies/reaction, with an average R2 of 0.99 and an efficiency of 93% for nVarIBDV and an average R2 of 1.00 and an efficiency of 94% for non-nVarIBDV. The method was also used for the detection of 84 clinical bursae of chickens vaccinated with the live vaccine. The results showed that this method accurately distinguished the nVarIBDV and non-nVarIBDV strains (vaccine strains), compared with a strategy based on the sequence analysis of HVRs at the vp2 gene or the reverse transcription PCR (RT-PCR) for the vp5 gene. These findings showed that this one-step real-time TaqMan RT-PCR method provides a rapid, sensitive, specific, and simple approach for detection of infections caused by nVarIBDV and is a useful clinical diagnostic tool for identifying and distinguishing nVarIBDV from non-nVarIBDV, especially live vaccine strains.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Doença Infecciosa da Bursa/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Birnaviridae/diagnóstico , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária
10.
Microb Pathog ; 174: 105934, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481292

RESUMO

Mycoplasma hyopneumoniae is the etiological agent underlying porcine enzootic pneumonia, a chronic respiratory disease worldwide. The recruitment of plasminogen to the surface and subsequently promotion of plasmin conversion by the surface-located receptor, have been reported to assist the adhesion and invasion of Mycoplasmas. The surface localization and plasminogen-binding ability of M. hyopneumoniae enolase were previously confirmed; however, the biological functions were not be determined, especially the role as a plasminogen receptor. Here, using ELISA and SPR analyses, we confirmed the stable binding of M. hyopneumoniae enolase to plasminogen in a dose-dependent manner. The facilitation of the activation of plasminogen in the presence of tPA and direct activation of plasminogen at low efficiency without tPA addition by M. hyopneumoniae enolase were also determined using a plasmin-specific chromogenic substrate. Notably, the C-terminal and N-terminal regions located in M. hyopneumoniae enolase play an important role in plasminogen binding and activation. Additionally, we demonstrate that M. hyopneumoniae enolase can competitively inhibit the adherence of M. hyopneumoniae to PK15 cells. These results provide insight into the role of enolase in M. hyopneumoniae infection, a mechanism that manipulates the proteolytic system of the host.


Assuntos
Mycoplasma hyopneumoniae , Animais , Suínos , Mycoplasma hyopneumoniae/metabolismo , Plasminogênio/metabolismo , Fibrinolisina/metabolismo , Fosfopiruvato Hidratase , Adesinas Bacterianas/metabolismo
11.
Phytomedicine ; 108: 154504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332388

RESUMO

BACKGROUND: Mycoplasma-associated pneumonia is characterized by severe lung inflammation and immunological dysfunction. However, current anti-mycoplasma agents used in clinical practice do not prevent dysfunction of alveolar macrophages caused by the high level of the cytokine tumor necrosis factor-α (TNF-α) after mycoplasma infection. Apigenin inhibits the production of TNF-α in variet inflammation associated disease. PURPOSE: This study aimed to investigate apigenin's effect on mycoplasma-induced alveolar immune cell injury and the mechanism by which it inhibits TNF-α transcription. METHODS: In this study, we performed a mouse model of Mycoplasma hyopneumoniae infection to evaluate the effect of apigenin on reducing mycoplasma-induced alveolar immune cell injury. Furthermore, we carried out transcriptome analysis, RNA interference assay, methylated DNA bisulfite sequencing assay, and chromatin immunoprecipitation assay to explore the mechanism of action for apigenin in reducing TNF-α. RESULTS: We discovered that M. hyopneumoniae infection-induced necroptosis in alveolar macrophages MH-S cells and primary mouse alveolar macrophages, which was activated by TNF-α autocrine. Apigenin inhibited M. hyopneumoniae-induced elevation of TNF-α and necroptosis in alveolar macrophages. Apigenin inhibited TNF-a mRNA production via increasing ubiquitin-like with PHD and RING finger domains 1 (Uhrf1)-dependent DNA methylation of the TNF-a promotor. Finally, we demonstrated that apigenin regulated Uhrf1 transcription via peroxisome proliferator activated receptor gamma (PPARγ) activation, which acts as a transcription factor binding to the Uhrf1 promoter and protected infected mice's lungs, and promoted alveolar macrophage survival. CONCLUTSION: This study identified a novel mechanism of action for apigenin in reducing alveolar macrophage necroptosis via the PPARγ/ Uhrf1/TNF-α pathway, which may have implications for the treatment of Mycoplasma pneumonia.


Assuntos
Macrófagos Alveolares , Mycoplasma , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Apigenina/farmacologia , Mycoplasma/metabolismo , Metilação , Necroptose , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Front Oncol ; 12: 1021570, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439486

RESUMO

Purposes: This study aimed to establish a predictive model of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) by contrast-enhanced computed tomography (CT), which relied on a combination of machine learning approach and imaging features covering Liver Imaging and Reporting and Data System (LI-RADS) features. Methods: The retrospective study included 279 patients with surgery who underwent preoperative enhanced CT. They were randomly allocated to training set, validation set, and test set (167 patients vs. 56 patients vs. 56 patients, respectively). Significant imaging findings for predicting MVI were identified through the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression method. Predictive models were performed by machine learning algorithm, support vector machine (SVM), in the training set and validation set, and evaluated in the test set. Further, a combined model adding clinical findings to the radiologic model was developed. Based on the LI-RADS category, subgroup analyses were conducted. Results: We included 116 patients with MVI which were diagnosed through pathological confirmation. Six imaging features were selected about MVI prediction: four LI-RADS features (corona enhancement, enhancing capsule, non-rim aterial phase hyperehancement, tumor size) and two non-LI-RADS features (internal arteries, non-smooth tumor margin). The radiological feature with the best accuracy was corona enhancement followed by internal arteries and tumor size. The accuracies of the radiological model and combined model were 0.725-0.714 and 0.802-0.732 in the training set, validation set, and test set, respectively. In the LR-4/5 subgroup, a sensitivity of 100% and an NPV of 100% were obtained by the high-sensitivity threshold. A specificity of 100% and a PPV of 100% were acquired through the high specificity threshold in the LR-M subgroup. Conclusion: A combination of LI-RADS features and non-LI-RADS features and serum alpha-fetoprotein value could be applied as a preoperative biomarker for predicting MVI by the machine learning approach. Furthermore, its good performance in the subgroup by LI-RADS category may help optimize the management of HCC patients.

13.
Vet Res ; 53(1): 95, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397177

RESUMO

Mycoplasma hyopneumoniae, the causative agent of swine respiratory disease, demonstrates differences in virulence. However, factors associated with this variation remain unknown. We herein evaluated the association between differences in virulence and genotypes as well as phenotype (i.e., biofilm formation ability). Strains 168 L, RM48, XLW-2, and J show low virulence and strains 232, 7448, 7422, 168, NJ, and LH show high virulence, as determined through animal challenge experiments, complemented with in vitro tracheal mucosa infection tests. These 10 strains with known virulence were then subjected to classification via multilocus sequence typing (MLST) with three housekeeping genes, P146-based genotyping, and multilocus variable-number tandem-repeat analysis (MLVA) of 13 loci. MLST and P146-based genotyping identified 168, 168 L, NJ, and RM48 as the same type and clustered them in a single branch. MLVA assigned a different sequence type to each strain. Simpson's index of diversity indicates a higher discriminatory ability for MLVA. However, no statistically significant correlation was found between genotypes and virulence. Furthermore, we investigated the correlation between virulence and biofilm formation ability. The strains showing high virulence demonstrate strong biofilm formation ability, while attenuated strains show low biofilm formation ability. Pearson correlation analysis revealed a significant positive correlation between biofilm formation ability and virulence. To conclude, there was no association between virulence and our genotyping data, but virulence was found to be significantly associated with the biofilm formation ability of M. hyopneumoniae.


Assuntos
Biofilmes , Mycoplasma hyopneumoniae , Doenças dos Suínos , Animais , Genótipo , Tipagem de Sequências Multilocus/veterinária , Mycoplasma hyopneumoniae/genética , Suínos , Doenças dos Suínos/microbiologia , Virulência
14.
Microb Pathog ; 172: 105779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116609

RESUMO

Nicotinamide Adenine Dinucleotide-Dependent (NADH) flavin oxidoreductase and NADH oxidase (NOX) are important virulence factors of Mycoplasma hyopneumoniae (Mhp), which are devoted to the function of adhesion, oxidative stress damage and apoptosis to host cells in our previous studies. Here, immune responses of NADH flavin oxidoreductase (NFOR) and NOX in mice and immune efficacy inoculated with intramuscular (IM), intranasal (IN), intramuscular unite intranasal (IM + IN) approaches were evaluated and compared. Cellular immunity levels, systemic immune and local mucosal immune responses were investigated by indirect enzyme-linked immunosorbent assay (iELISA) and quantitative reverse transcription PCR (qRT-PCR). Mice inoculated with NFOR and NOX by IM and IN or IM + IN could induce obvious secretion of specific immunoglobulin G (IgG) and secretory immunoglobulin A antibodies (sIgA) compared to those in negative control group. IM + IN inoculation resulted in systemic and local mucosal immune responses that were strongly produced. Moreover, Mhp NFOR and NOX could activate local mucosal immune responses mediated by Th1 and Th17 cells by IN. Our finding supported the notion that IM + IN was an effective immunization route for Mhp, which lays a foundation for more effective prevention of Mhp, and provides theoretical basis for the development of new subunit vaccines of Mhp.


Assuntos
Mycoplasma hyopneumoniae , Camundongos , Animais , Imunidade nas Mucosas , NAD , Fatores de Virulência , Células Th17 , FMN Redutase , Vacinas Bacterianas , Imunoglobulina G , Vacinas de Subunidades , Imunoglobulina A Secretora , Flavinas , Camundongos Endogâmicos BALB C
15.
Vet Rec ; 191(10): e1840, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073006

RESUMO

BACKGROUND: Since 2018, atrophy of the bursa has been found among vaccinated chickens with high antibody titres against infectious bursal disease virus (IBDV) in Fujian, China, suggesting poor vaccine efficacy against circulating IBDV strains. METHODS: Novel IBDV strains were isolated, and vp2 and vp1 genes were sequenced and used to carry out phylogenetic analysis. Pathogenicity was investigated using 21-day-old specific pathogen-free (SPF) chickens. In addition, the effectiveness of current commercial vaccines used in China was evaluated against the isolated novel IBDV strains. RESULTS: Six IBDV isolates were successfully obtained, which formed an independent cluster and belonged to genotype A2dB1, based on phylogenetic analysis of the vp2 and vp1 genes. The pathogenicity of the novel IBDV FJ2019-01 isolate in 21-day-old SPF chickens was characterised by severe atrophy of the bursa and a largely decreased number of lymphocytes, atrophy of the follicle and broadening of mesenchyme in the bursa 3-23 days after infection. Unfortunately, all vaccinated chickens with high antibody titres against IBDV also developed atrophy and largely decreased lymphocytes in the bursa, as in the unvaccinated birds challenged with FJ2019-01. Furthermore, high viral loads of FJ2019-01 were detected in the bursa of all vaccinated chickens. CONCLUSIONS: These findings suggest that current commercial IBDV vaccines used in China did not provide protection against novel IBDV variants.


Assuntos
Infecções por Birnaviridae , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença Infecciosa da Bursa/genética , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Filogenia , Galinhas , Bolsa de Fabricius/patologia , Doenças das Aves Domésticas/prevenção & controle , Atrofia/patologia , Atrofia/veterinária , Anticorpos Antivirais
16.
Vaccine ; 40(42): 6074-6083, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36109278

RESUMO

With the improvement of large-scale breeding in pig farms, conventional head-by-head immunization has disadvantages with low efficiency and high cost. Considering that most pathogens leading to pulmonary diseases circulate from the respiratory mucosa, immunization through the respiratory tract route has been a highly attractive vaccine delivery strategy. In this study, to develop an effective Mycoplasma hyopneumoniae (Mhp) aerosol vaccine, a customized ultrasonic atomizer was developed. The aerodynamic diameter, activity, and content of the Mhp aerosol vaccine were measured. In addition, piglets were immunized with the Mhp aerosol vaccine, and the immunity of the animal challenge protection test was evaluated. At the end of nebulization, the mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) of the aerosol were 2.98 ± 0.02 µm and 1.51 ± 0.02, respectively. Moreover, 10 min after nebulization, the MMAD and GSD of the aerosol were 2.76 ± 0.02 µm and 1.51 ± 0.01, respectively, which were hardly changed. Compared with theoretical value, the actual titer of aerosol vaccines presented in 50% color changing unit (CCU50) after nebulization decreased 0.6. The shape, size, and uniformity of collected aerosols are relatively stable. The proportion of Mhp in aerosol produced by vaccine stock solution and 10 times diluted vaccine solution was 76.52% and 58.82%, respectively, and the average number of Mhp in a single aerosol was 3.06 and 1.51, respectively. In addition, the aerosol vaccine antigen particles could be transported to the lower respiratory tract, a local mucosal immune response was induced in piglets. The vaccine colonized the respiratory tract and significantly decline the lung lesion index after aerosol vaccination. In conclusion, an effective aerosol vaccine against Mhp infection was developed. And this is the first effective assessment for Mhp live vaccine with aerosolization against infection in piglets.


Assuntos
Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Animais , Vacinas Bacterianas , Pneumonia Suína Micoplasmática/prevenção & controle , Aerossóis e Gotículas Respiratórios , Suínos , Vacinas Atenuadas
17.
Front Physiol ; 13: 898426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846005

RESUMO

Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.

18.
BMC Vet Res ; 18(1): 126, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366872

RESUMO

BACKGROUND: Mycoplasma hyopneumoniae (M. hyopneumoniae) is the etiological agent of enzootic pneumonia, a highly infectious swine respiratory disease that distributed worldwide. The pathogenesis and virulence factors of M. hyopneumoniae are not fully clarified. As an important virulence factor of bacteria, nicotinamide adenine dinucleotide (NADH) oxidase (NOX) participates in host-pathogen interaction, however, the function of NOX involved in the pathogenesis of M. hyopneumoniae is not clear. RESULTS: In this study, significant differences in NOX transcription expression levels among different strains of M. hyopneumoniae differed in virulence were identified, suggesting that NOX may be correlated with M. hyopneumoniae virulence. The nox gene of M. hyopneumoniae was cloned and expressed in Escherichia coli, and polyclonal antibodies against recombinant NOX (rNOX) were prepared. We confirmed the enzymatic activity of rNOX based on its capacity to oxidize NADH to NAD+. Flow cytometry analysis demonstrated the surface localization of NOX, and subcellular localization analysis further demonstrated that NOX exists in both the cytoplasm and cell membrane. rNOX was depicted to mediate adhesion to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Pre-neutralizing M. hyopneumoniae with anti-rNOX antibody resulted in a more than 55% reduction in the adhesion rate of high- and low-virulence M. hyopneumoniae strains to hTERT-PBECs. Moreover, a significant difference appeared in the decline in CCU50 titer between virulent (168) and virulence-attenuated (168L) strains. NOX not only recognized and interacted with host fibronectin but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by NOX in hTERT-PBECs was positively correlated with the virulence of M. hyopneumoniae strains. CONCLUSIONS: NOX is considered to be a potential virulence factor of M. hyopneumoniae and may play a significant role in mediating its pathogenesis.


Assuntos
Mycoplasma hyopneumoniae , Animais , Complexos Multienzimáticos , Mycoplasma hyopneumoniae/genética , NAD , NADH NADPH Oxirredutases , Oxirredutases/metabolismo , Suínos , Virulência
19.
Microbiol Spectr ; 10(3): e0249321, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35446115

RESUMO

Mycoplasma hyorhinis is a widespread pathogen in pig farms worldwide. Although the majority of M. hyorhinis-colonized pigs have no apparent clinical disease, the pathogen can induce diseases such as polyserositis, arthritis, and eustachitis in some cases. To explore the mechanisms for the occurrence of these diseases, we challenged 4 groups of Bama miniature pigs with M. hyorhinis isolated from pigs without clinical symptoms (non-clinical origin [NCO] strain) or with typical clinical symptoms (clinical origin [CO] strain) and investigated the impacts of different strains and inoculation routes (intranasal [IN], intravenous [IV] + intraperitoneal [IP], and IV+IP+IN) on disease induction. Another group of pigs was set as a negative control. Pigs inoculated with the CO strain through a combined intravenous and intraperitoneal (IV+IP) route showed a significant decrease in average daily weight gain (ADWG), serious joint swelling, and lameness compared with the pigs in the negative-control group. Furthermore, this group developed moderate-to-severe pericarditis, pleuritis, peritonitis, and arthritis, as well as high levels of IgG and IgM antibodies. Pigs inoculated IV+IP with the NCO strain developed less marked clinical, pathological changes and a weaker specific antibody response compared with the pigs inoculated with the CO strain. The challenging results of the NCO strain via different routes (IV+IP, IV+IP+IN, and IN) indicated that the combined route (IV+IP) induced the most serious disease compared to the other inoculation routes. Intranasal inoculation induced a smaller decrease in ADWG without obvious polyserositis or arthritis. These data suggest that differences in both strain virulence and inoculation route affect the consequences of M. hyorhinis infection. IMPORTANCE Mycoplasma hyorhinis is a widespread pathogen in pig farms worldwide. The mechanisms or conditions that lead to the occurrence of disease in M. hyorhinis-infected pigs are still unknown. The objective of this study was to evaluate the impact of differences in the virulence of strain and the inoculation route on the consequences of M. hyorhinis infection.


Assuntos
Artrite , Infecções por Mycoplasma , Mycoplasma hyorhinis , Doenças dos Suínos , Animais , Artrite/veterinária , Infecções por Mycoplasma/veterinária , Suínos , Porco Miniatura , Virulência
20.
Anal Bioanal Chem ; 414(13): 3885-3894, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35380231

RESUMO

African swine fever virus (ASFV) is the pathogen of African swine fever, a highly contagious and fatal disease of wild boar and domestic pigs. The flow of ASFV through pork products is more concealed, higher risky, and more difficult to prevent and control. Presently, on-site ASFV detection methods in preclinical infected pigs and circulated pork products are lacking. Here, fluorescent test strip-based rapid ASFV detection method in pork was established combined with recombinase aided amplification (RAA) and quantum dot microspheres (QDMs). This method is specific to ASFV with no cross-reactivity to pseudorabies virus (PRV), porcine circovirus type 2 (PCV2), and porcine reproductive and respiratory syndrome virus (PRRSV). The method also showed highly sensitivity with a detection limit of 1 copy for ASFV plasmid templates containing B646L gene and 100 copies/g for DNA extracts from clinical pork samples within a short detection time of less than 25 min. Additionally, the method showed 99.17% consistency with real-time PCR in the ASFV detection of 120 clinical pork samples. Overall, the QDMs-based test strip method provides specific, sensitive, rapid, and simple detection of ASFV in pork, which may contribute to maintain the food safety of pork products, and facilitate ASFV traceability and prevention. Rapid and sensitive detection of African swine fever virus in pork by QDMs based test strip assay.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Carne de Porco , Pontos Quânticos , Carne Vermelha , Febre Suína Africana/diagnóstico , Vírus da Febre Suína Africana/genética , Animais , Hidrolases , Microesferas , Recombinases , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...